Sunday, August 30, 2009

WiFi works

The typical Wi-Fi setup contains one or more Access Points (APs) and one or more clients. An AP broadcasts its SSID (Service Set Identifier, "Network name") via packets that are called beacons, which are broadcast every 100 ms. The beacons are transmitted at 1 Mbit/s, and are of relatively short duration and therefore do not have a significant influence on performance. Since 1 Mbit/s is the lowest rate of Wi-Fi it assures that the client who receives the beacon can communicate at least 1 Mbit/s. Based on the settings (e.g. the SSID), the client may decide whether to connect to an AP. Also the firmware running on the client Wi-Fi card is of influence. Say two APs of the same SSID are in range of the client, the firmware may decide based on signal strength to which of the two APs it will connect. The Wi-Fi standard leaves connection criteria and roaming totally open to the client. This is a strength of Wi-Fi, but also means that one wireless adapter may perform substantially better than the other. Since Wi-Fi transmits in the air, it has the same properties as a non-switched ethernet network. Even collisions can therefore appear like in non-switched ethernet LAN's.

Channels


Except for 802.11a, which operates at 5 GHz, Wi-Fi uses the spectrum near 2.4 GHz, which is standardized and unlicensed by international agreement, although the exact frequency allocations vary slightly in different parts of the world, as does maximum permitted power. However, channel numbers are standardized by frequency throughout the world, so authorized frequencies can be identified by channel numbers.

The frequencies for 802.11 b/g span 2.400 GHz to 2.487 GHz. Each channel is 22 MHz wide and 5 MHz spacers between the channels are required. With the required spacers, only 3 channels (1,6, and 11) can be used simultaneously without interference.

No comments:

Post a Comment

Hi thank you for comment in Assignment Lanka " Book Mark on me' To future references.

Tag

Assignment Lanka Tag Cloud
Computer Networks The History of Local Area Networks, LAN, The Topologies of a Networks, LANs describe different types of transmission Medias, Local Area Networks Access Methods, Carrier Sense Multiple Access with Collision Detect, Development of LAN Technologies. LAN -Token Ring, LAN Ethernet Digital, LAN - Ethernet Sun microsystems, LAN - Ethernet Mixed Environment, LAN - Token Ring was introduced by IBM LAN - IBM implementation of Token Ring, Token Ring Novell, LAN Token Ring - in a mixed environment, LAN - Fiber Distributed Data Interface, LAN - ATM, LAN Components, LAN Switching Methods, Virtual Local Area Network, Port based VLAN, Mac based VLAN, Protocol based VLAN, User Base VLAN, PC networks Components, PC networks Shared resources, PC Network operating systems, PC networks Novell Netware, PC networks Windows NT, PC networks IBM LAN Server Computer Programming Languages HTML Language, The Generations of Programming Languages, Different types of High Level Languages, Different types of High Level Languages Disadvantages
Computer Networks - IBM LAN Server, Windows NT Networks, Novell Netware, Network operating systems, Networks Shared, Networks Components, User Base, Protocol based, Mac based, Port based, VLAN, LAN Switching, LAN Components, ATM, Fiber Data, Token Ring, Token Ring Novell, IBM implementation, Ethernet, Sun microsystems, Ethernet Digital, Token passing, LAN Technologies, CSMA/CD, Access Methods, Transmission, Networks, The History of Local Area Networks, LAN